LSPSeries

~ Highly Durable Lead-free solder paste ~

Due to high functionality and electronic controls of automotive features, highly durable solder joint is a must. Considering all usage conditions, a new lead-free solder alloy (LSP) with superior durability performance is developed.

Characteristics

- High joint reliability at harsh installation conditions
- High durability on different boards (glass epoxy/flexible/metal)
- •High reliability after soldering, required for automotive applications
- •No flux residue crack, and no whisker generation due to complete halogen free

Alloy Composition <Patented>

- Two times stronger than SAC305
- No deterioration of strength at 150°C

	LSP	SAC305
Composition	Sn-3.2Ag-0.5Cu-4.0Bi -3.5Sb-Ni+Co	Sn-3.0Ag-0.5Cu
Melting point	223℃	219℃
Strength	95MPa	42MPa
Elongation	20.4%	33.7%
Young's modulus	51GPa	52GPa

Joint Reliability (Thermal fatigue characteristics (-40⇔+150°C × 3,000 Cycle)

- Controls the progress of crack, and maintains high strength after 3,000 cycles
- Effective for solder joints of electronics parts (LGA.QFN) where stress is applied

Crack growth rate and max shear strength

Joint cross section (3,000 cycle)

Check cross section

- For LSP, minimal internal structure (intermetallic compound) change Maintains strength, prevents crack growth and progress
- •For SAC305, coarser internal structure and crystal orientation change Strength deterioration, influences crack generation and progress

Durability improvement mechanism

Realize high durability with 3 strengthening methods

