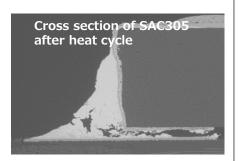
PS48BR-600-LSP

Highly Durable Lead-free Solder Paste


• High Durability ($-40 \Leftrightarrow +150^{\circ} C 3,000$ cycles)

Technical Information

- Fine-pitch printing (0.5mmP BGA applicable)
- Prevent residue crack (Engine direct mounting [-40⇔+125℃] applicable)
- High Electrical reliability (No whisker occurrence due to zero halogen)

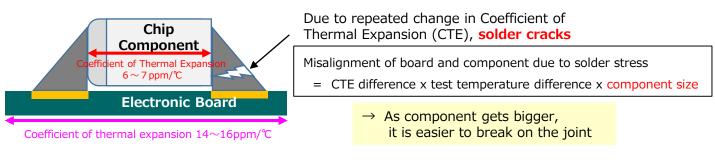
Is lack of durability of lead-free solder paste a concern?

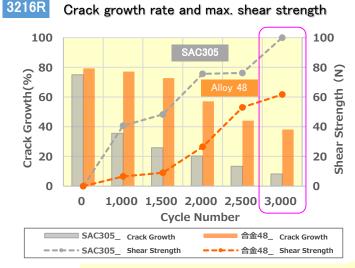
- Exposed to harsher environment
- Increased number of fragile components
- With high density components, difficulty to supply sufficient solder paste

Develop new solder paste to solve these problems

Thermal fatigue characteristics of solder joint (-40⇔+150℃ cycle)

Develop solder alloy for much harsher environment (Product# : Alloy 48)


[Installation environment and thermal cycle conditions]


- More control devices are mounted in harsher environment, such as engine room
- Higher environmental performance is required from soldering material
- Develop solder alloy that can pass 40⇔+150℃thermal cycle

Installation Environment	Thermal cycle condition
Engine room	-40℃ ⇔ +125℃
Engine direct mounting	Ļ
Electromechanical Integration	-40℃ ⇔ +150℃

Maintain joint reliability with larger sized fragile chip component

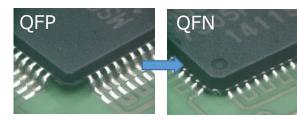
Joint cross-section for chip component

Joint cross section (after 3,000 cycle)

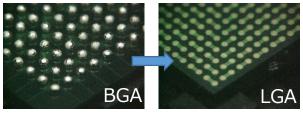
Complete rupture

No rupture

Control the progress of crack, and even after 3,000 cycles maintains 3 times strengths than SAC305

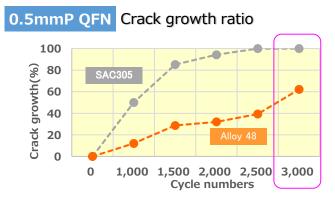


Particularly effective for low joint reliability component


IC Appearance

ICs are larger than Chips, therefore, stress applied on IC solder joint is stronger

Absorb stress with leads Stress concentrated on joint



With ball

No ball, less solder at joint

Easy to break - Fragile

SAC305

1,500 2,000 2,500

Cycle numbers

3,000

0.5mmP LGA Crack Growth Ratio

1,000

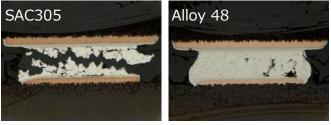
100

80

0

Crack Growth (%)

Joint cross section (after 3,000 cycle/ end lead)


Alloy 48

Completely ruptured

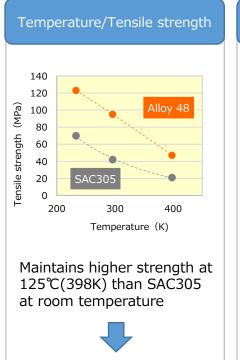
No rupture

Joint cross section (after 3,000 cycle/ end lead)

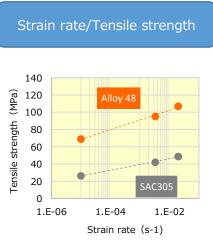
Completely ruptured

No rupture

3


Control the progress of crack, no solder joint rupture even after 3,000 cycles

Solder Alloy Characteristics


Solder Alloy characteristics Enhanced strength, 2 times more than SAC305

	Alloy 48	SAC305
Metal composition	Sn-3.2Ag-0.5Cu-4.0Bi- 3.5Sb-Ni+Co	Sn-3.0Ag-0.5Cu
Melting point	223°C	219°C
Tensile strength	95MPa	42MPa
0.2% proof stress	65MPa	32MPa
Elongation	20.4%	33.7%
Young's modules	51Gpa	52Gpa
Coefficient of thermal expansion (CTE) ※25°C~100°C	21.1ppm	24.2ppm

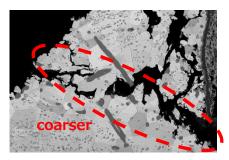
Solder Alloy Strength

Superior durability at high temperature

Regardless of strain rate, higher strength than SAC305 (high strength even at low strain rate)

Not prone to Creep deformation

Even in heat treatment at 150°C/1,000h, almost no deterioration of strength is observed


Strong resistance to thermal degradation

Improved Durability Mechanism

Fracture mechanism of SAC305

After thermal cycle – Fillet Cross Section

Due to different CTE of board and component, repeated stress is applied to solder joint ↓ Solder inter metallic compound becomes coarser

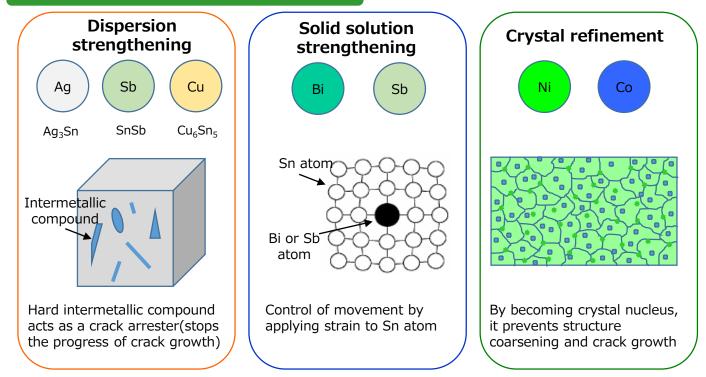
Crack formation

Crack propagates, and grows, leads to fracture

Mechanism to improve durability

3 Mechanism to strengthen solder joint

Dispersion strengthening

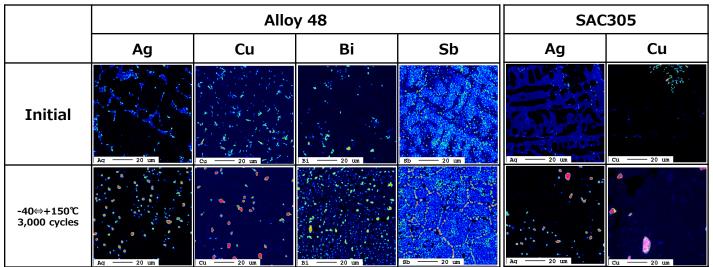

Strengthen solder by forming hard intermetallic compound

Solid-solution strengthening

Strengthen solder by solid solution in Sn matrix

Crystal gain refinement strengthening

Strengthen solder by refining structure



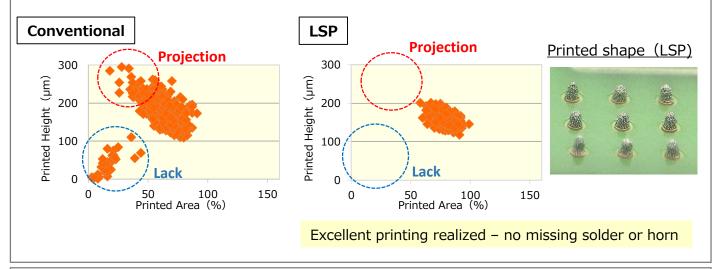
Change of Structure

Cross-sectional structure

	Cross-section observation		EBSD (%Crystal orientation analysis)	
	Alloy 48	SAC305	Alloy 48	SAC305
Initial		Agas and a second		
-40⇔+150℃ 3,000 cycles				
	No significant change in inter metallic compound after heat cycle	Collapse of Ag ₃ Sn network after heat cycle Crack formation	Even after thermal cycle, crystal orientation is uniform Low structural change after repeated stress	After thermal cycle, crystal orientation is not uniform Due to repeated stress, structure becomes coarser

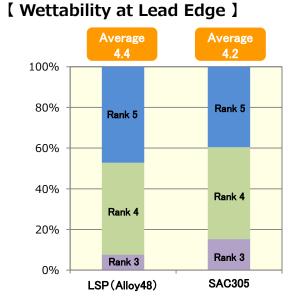
Element image

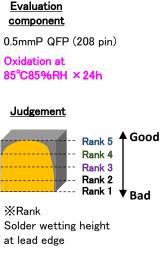
There is no significant bias of elements after thermal cycling


ARIMA

Solder Paste Characteristics

Fine pitch printing – capability to mount 0.5 mm P BGA

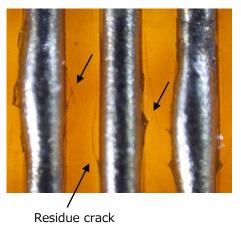

By formulating high water repellant synthetic resin, friction at metal mask opening can be reduced.

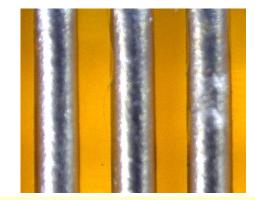

(Φ0.25mm opening / Printability) *150µm mask used


Stable wetting characteristics

Same or bettering wetting than current SAC 305, even with the addition of Bi/Sb

QFP lead tip (LSP)

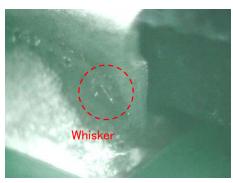

Stable wetting even at lead end where it is difficult to achieve good wetting


Adding flexible resin prevents residue cracks

Flexible resin prevents residue cracks even after thermal cycle test

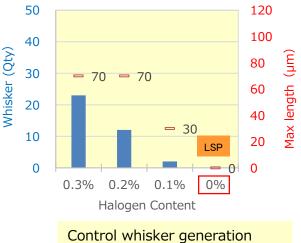
[Flexible resin not used]

[Flexible resin used]



No Crack Prevent moisture penetration, and maintain high electrical reliability

Perfect halogen free, as a result no whisker generation


Halogen based activator, which helps generate and grow whisker, is not used – 100% halogen free flux.

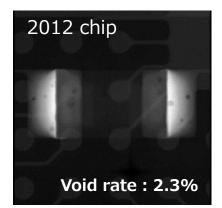
[Whisker Generation]

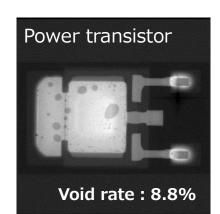
Due to high density component mounting space between components are getting narrower, and whisker generation may cause short circuit.

[Halogen content vs Whisker]

by using halogen free flux

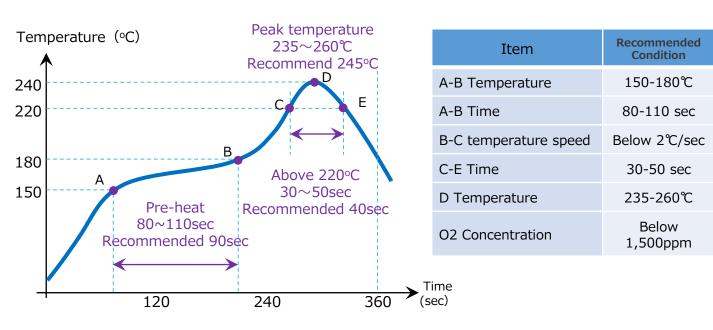
PS48BR-600-LSP Sn-3.2Ag-0.5Cu-4.0Bi-3.5Sb-Ni-Co


Highly Durable Lead-free Solder Paste


Solder Paste Characteristics

Low void generation

Less void generation by Flux optimization


[Surface Mounted component/X-ray image]

There is significant reduction of void generation even in the component where gas escaping is difficult

Reflow profile recommendation

HARIMA

Other characteristics

Item	Representative value	Test method	
Product name	PS48BR-600-LSP	-	
Alloy composition	Sn-3.2Ag-0.5Cu-4.0Bi-3.5Sb-Ni-Co	-	
Powder size	20-38µm (Type4)	JIS Z 3284	
Solidus temperature	205℃	JIS Z 3198	
Liquidus temperature	223°C		
Halide content	0.0%	JIS Z 3197	
Flux content	10.0%	JIS Z 3197	
Corrosivity (Copper plate)	No corrosiveness	JIS Z 3197	
Surface insulation resistance	More than $1 \times 10^{9} \Omega$ from initial	JIS Z 3197	
Migration	No short between 100um gap electrode		
Viscosity	230Pa•s	JIS Z 3284	
Thixotropic index	0.48		
Printing slump	No bridges in 0.2mm gaps	JIS Z 3284	
Hot slump	No bridges in 0.3 mm gaps		
Tackiness	1.0N or more (after 24 hours had elapsed)	JIS Z 3284	
Wetting effect	Wetting class 2	JIS Z 3284	
Solder ball	Rank 3 (Initial and 24 hours after)	JIS Z 3284	